The Hybrid CART-Logit Model in Classification and Data Mining

Dan Steinberg
N. Scott Cardell

http://www.salford-systems.com
Data mining

- Attempt to discover possibly very complex structure in huge databases (large number of records and large number of variables)
- Problems include classification, regression, clustering, association (Market basket analysis)
- Need tools to partially or fully automate the discovery process
- Large databases support search for rare but important patterns
 - can use methods which would not work at all on small databases (very slow asymptotic convergence)
- Conclusion of a number of studies is that no single method is best for all problems
 - thus a collection of tools is required
CART & LOGIT: Two of the essential tools

• CART - nontraditional decision tree methodology, style of new data mining tools
 – high degree of automation
 – communication via pictures
 – ability to handle arbitrarily complex data structures
 – relatively easy to use and understand even by non-statisticians
 – demonstrates remarkable accuracy in a broad range of contexts

• LOGIT - traditional methodology relying on classical statistical principles
 – requires expert to develop hand-crafted models
 – can often be understood only via simulation
 – ability to handle linear and smooth curvilinear data structures
 – demonstrates remarkable accuracy in a broad range of contexts
Core CART features

- Automatic separation of relevant from irrelevant predictors (variable selection)
- Does not require a transform such as log, square root (model specification)
- Automatic interaction detection (model specification)
- Impervious to outliers (can handle dirty data)
- Unaffected by missing values (does not require list-wise deletion or missing value imputation)
- Requires only moderate supervision by the analyst
- First time model is often as good as a neural net developed by an expert
- None of these features shared by LOGIT
Importance of logistic regression in data mining

- Logit can be an excellent performer in classification
- In STATLOG project, variations of logistic discriminant analysis were most accurate in 5 out of 21 problems
 - competition included neural nets, decision trees
 - among top 5 performers, 12 trees out of 21 problems
- Provides a smooth, continuous predicted probability of class membership
 - A small change in a predictor variable yields a small change in predicted probability
- Effective capture of global features of data
 - Main effects model reflects how probability responds to predictor \(x \) over entire range of \(x \)
 - Some flexibility allowed with transformation, polynomials and interactions
CART and LOGIT excel at different tasks

- CART is notoriously weak at capturing strong linear structure
- CART recognizes the structure but cannot represent it effectively
- With many variables, several of which enter a model linearly, structure will not be obvious from CART output
- CART can produce a very large tree in an attempt to represent very simple relationships
- LOGIT easily captures and represents linear structure
- Many non-linear structures can still be reasonably approximated with a linear structure, hence even incorrectly specified LOGIT can perform well
Natural question-can CART and Logit be combined?

CART
• Automatic analysis
• Surrogates for missing values
• Unaffected by outliers
• Discontinuous response
 – Small change in x could lead to a large change in y
• Coarse-grained
 – A 17-node tree can only predict 17 different probabilities

LOGIT
• Requires hand-built models
• Deletes records or imputes missing values
• Sensitive to outliers
• Continuous smooth response
 – Small change in x leads to a small change in y
• Can have unique predicted probability for every record
Comparison of Hybrid models - Earlier methods

- Logit run in deliberately shallow tree
- Run in terminal nodes
- Results not successful
- Want to understand why
How CART works

- CART excels in the detection of local data structure
- Once a database is partitioned into two sub-samples at the root node, each half of the tree is analyzed entirely separately
- As the partitioning continues, the analysis is always restricted to the node in focus
 - the discovery of patterns becomes progressively more local
 - information from different nodes is not pooled or combined
 - the “fit” at one node is never adjusted to take into account the fit at another node
CART trees progressively truncate the variance of x and y

- **Goal of CART is to split data into homogeneous subsets**
 - the farther down the tree we go the less variability in the dependent variable
- **CART splits send cases with** $x \leq c$ **to left and** $x > c$ **to right**
 - Thus, the variance in predictor variables is also drastically reduced
 - if X is normally distributed and the cut point is at mean, variance in child nodes is reduced by about 64%; for subsequent mean splits the variance reduction will always be greater than 50%
 - thus, two splits on a variable could reduce variance to less than 25% of full sample variance
 - reduction will also apply to other correlated predictors
Running Logit models in CART terminal nodes is hopeless

- By the time CART has declared a node terminal the information remaining in the node is insufficient to support further statistical analysis
- The sample size is drastically reduced
 - The x and y variables have substantially reduced variance
- In a well-developed CART tree no parametric model should be supportable within terminal nodes
- Some analysts have suggested estimating logits or other parametric models earlier in the tree, after just a few splits
 - Same drawbacks as terminal node models but less extreme
 - At best provides a mechanism for finding switching regressions--not terribly successful in practice
Key to successful hybrid: run Logit in the root node

- Need to run the logit on all the data, thereby capitalizing on logit’s strength in detecting global structure
- Implemented as follows
 - Run CART, assign every case to a terminal node
 Assignment possible even for cases with many missing values
 Even a case with all missing data can be assigned a terminal node
 - Terminal node assignment reported by categorical variable with as many levels as terminal nodes
 - Feed this categorical variable in the form of terminal node dummies to a logit model
Hybrid CART-Logit

- **Single Logit run**
 1) Uses all data available
 2) Has variation in predictor variables
 3) Dummy variables for terminal nodes represent CART tree
 4) added variables constitute the hybrid model
Logit formulas for CART and Hybrid models

- **CART only**
 \[y = \beta_0 + \beta_1 \text{NODE}_1 + \beta_2 \text{NODE}_2 + \ldots + \beta_K \text{NODE}_K \]

 Where \(\text{NODE}_i \) is a dummy variable for the \(i^{th} \) CART node.

 NOTE: Every observation is assigned to a CART terminal node regardless of whether any predictor variables are missing.

- **CART-Logit Hybrid**
 \[y = \beta_0 + \beta_1 \text{NODE}_1 + \beta_2 \text{NODE}_2 + \ldots + \beta_R \text{NODE}_R + \]
 \[\beta_R + 1X_1 + \beta_R + 2X_2 + \beta_R + 3X_3 + \ldots + \beta_R X_R \]

 \[= \beta_0 + \sum_{i=1}^{R} \beta_i Q_i + \sum_{R+1}^{R} \beta_i Z_j \]

 CART node dummies Hybrid covariates
Logit on terminal node dummies alone reproduces CART exactly

- The logit model fit to CART terminal node dummies converts the dummies into estimated probabilities
- Otherwise, it is an exact representation of the CART model
- Each dummy represents the rules and interaction structure discovered by CART, albeit buried in a black box
- Likelihood score for this model forms a baseline for further testing and model assessment
- Excellent way to incorporate sampling weights and recalibrate a CART tree
Hybrid allows baseline Logit to expand by adding other variables to model

- Variables added as main effects will capture effects common across all nodes
- Common effects are undetectable within terminal nodes because the signal to noise ratio within terminal nodes is too low
- Effects detected across terminal nodes are likely to be weak -- all strong effects already detected by CART
- Nevertheless, a collection of weak effects can be very significant
- Added variables can be tested as a group via likelihood ratio test
Why Does the Logit Augment CART?

- By looking across nodes, Logit finds effects that CART cannot detect.
- Because these effects are not terribly strong they are not picked up by CART as primary node splitters.
- Once the sample is split by CART, these effects become progressively more difficult to detect as the subsamples become increasingly homogenous in the CART child nodes.
- While these effects may not be the strongest individually, collectively they can add enormous predictive power to the model.
- Results in a major enhancement in CART methodology.
How the Logit improves CART

- CART assigns a single score (probability) to all cases arriving at a terminal node.
- Logit imposes a slope on the cases in the node, allowing continuous differentiation of within-node probabilities based on variables.
- Note: Logit is common to all nodes - so slope is common across nodes.
LOGIT can also compensate for CART weaknesses

- CART sometimes produces a very coarse grained response image
 - Might produce only a small number of terminal nodes
 - “Score” is shared by all cases in a node
 - A 12 terminal node tree produces only 12 distinct scores
- Once CART finds a relatively rich group of responders it might stop splitting that node
 - Identifying a large block of cases as responders could be a classification tree success
 - For targeting, we may want to distinguish the strongest responders from the merely strong responders (e.g., for targeting with a restricted budget, we might only mail to the strongest group)
 - For classification purposes, such a distinction is irrelevant
 - Both groups are responders so CART does not try to distinguish further
Building the Logit component of the hybrid

- Add variables already selected as important by CART
- Add competitor variables in the root node that never appeared as splitters or surrogates in the tree
- Possibly use a stepwise selection procedure
- Add variables known to be important from other studies
- Will need to consider variable transforms—log, square root
- Will need to deal with missing values
 - impute a value
 - zero and add missing value dummy indicator to model
- Can ignore interactions: already captured in CART terminal nodes
 - goal is to search for weak main effects
Missing value handling in hybrid CART-Logit

- Simplest approach--ignore the problem!
 - Drop all records with missing values on model variables
- Assign CART-predicted probabilities to those cases
- Assign hybrid-predicted probabilities to all other cases
- More complicated approaches
 - Missing value imputation
 - Dummy for missing value indicator plus nesting for non-missing
- Complicated procedures not needed since CART tree will give good results anyway
Beyond linear main effects: node-specific effects

- The only interactions worth considering in hybrid model are:
 - terminal node dummy interactions with selected variables
 - interactions with missing value indicators
- Has the effect of allowing a separate model for a group of terminal nodes, most likely restricted to just a few variables
- Some difficulty in locating such interactions
 - With T terminal nodes there typically will be $2^{T-1} - 1$ partitions of nodes into subsets
- If these are pursued an automated search is needed
Does a main effects Logit augmented CART impose too much structure on the sample?

- The CART methodology segments the data in very different sub-samples
- **Q:** Why should we expect that a single common Logit would be valid?
- **A:** First, the terminal node dummies capture all the complex interactions and non-commonality of the hyper-segments
- Second, we **test** the Logit developed in each node to see if it makes an improvement over the CART score
 - If the Logit does not improve the node likelihood (a rare event), we do not apply the Logit to that node.
 - In our AMEX models, the nodes have often been improved dramatically by the Logit model
Assessment of node-specific logit fit

<table>
<thead>
<tr>
<th>Node</th>
<th>TYPE</th>
<th>FREQ</th>
<th>CART log-likelihood</th>
<th>Logit LL</th>
<th>Expected minus CART LL</th>
<th>Logit LL</th>
<th>CART LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>107315</td>
<td>-7533.91</td>
<td>-7490.01</td>
<td>43.9041</td>
<td>43.9038</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>55727</td>
<td>-3105.76</td>
<td>-3080.93</td>
<td>24.8256</td>
<td>19.0118</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7477</td>
<td>-438.04</td>
<td>-436.13</td>
<td>-437.11</td>
<td>0.9347</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2221</td>
<td>-94.87</td>
<td>-94.68</td>
<td>0.1950</td>
<td>0.6259</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>820</td>
<td>-40.31</td>
<td>-41.48</td>
<td>1.1644</td>
<td>0.2428</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>16124</td>
<td>-1788.50</td>
<td>-1779.43</td>
<td>9.0670</td>
<td>14.9244</td>
<td></td>
</tr>
</tbody>
</table>

- **Important to test whether the hybrid model shows lack of fit in any node or subset of nodes**
- **Simple likelihood test node by node**
 - CART model assigns the mean probability to all cases in a node
 - Hybrid assigns record-specific probability
 - If CART likelihood is greater than hybrid main effects model, do not apply hybrid model to this node
Monte Carlo model assessment

- Assume known true probabilistic data generation processes
- Draw samples of various sizes (N=2,000 and 20,000)
- Repeat experiment many times (we use R=100)
- Examine typical outcomes (mean) rather than single example
- Assess models on basis of
 - Fit (log-likelihood)
 - Lift (gains chart)
- Look at both training data and holdout samples
Specific Monte Carlo experiments

- True DGP is
 - Simple Logit- one variable
 - CART process- one variable, highly non-linear
 - Hybrid process
 - Logit- several variables (Possibly missing)
 - Hybrid- several variables (Possibly missing)
 - Highly non-linear smooth function (not Logit)
 - Complex Logit with information missingness
Model Development Sequence

- Generate TEST and LEARN samples of equal size.
 - N=1,000 for LEARN and TEST small experiments
 - N=10,000 for LEARN and TEST for large experiments
- Generate HOLDOUT sample (N=2,000 or N=20,000)
- Run CART on LEARN data; select optimal tree using TEST data.
- Run Logit on all available data (pooled TEST and LEARN samples).
 - Include dummies for CART nodes.
 - Include selected variables and transforms
 - Choose missing value handling procedure.
Summary of results

- In smaller samples, (N=2,000) Logit performs very well even when Logit is not the true model
 - Simpler model reduces risk of over-fitting
- In larger samples, (N=20,000) Hybrid model dominates out-of-sample performance
 - Even when Logit is true model, Hybrid is almost as good
- In larger samples, CART and Hybrid manage problems with missing values quite well whereas logit performance collapses
- In large datasets with high frequencies of missings, Hybrid outperforms other models regardless of which model is true
Log-likelihood results $N=1,000$

<table>
<thead>
<tr>
<th>Learn/Test Sample</th>
<th>Experiment</th>
<th>CART</th>
<th>Logit</th>
<th>Hybrid</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>-1231.97</td>
<td>-1200.34</td>
<td>-1192.39</td>
<td>-1201.38</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1260</td>
<td>-1385.33</td>
<td>-1259.37</td>
<td>-1268.39</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1188.5</td>
<td>-1163.94</td>
<td>-1144.98</td>
<td>-1160.99</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1198.47</td>
<td>-1158.21</td>
<td>-1125.64</td>
<td>-1080.05</td>
</tr>
<tr>
<td></td>
<td>4 w/dummies</td>
<td>-1191.24</td>
<td>-1158.21</td>
<td>-1120.5</td>
<td>-1080.05</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1179.37</td>
<td>-1153.71</td>
<td>-1111.39</td>
<td>-1032.93</td>
</tr>
<tr>
<td></td>
<td>5 w/dummies</td>
<td>-1175.81</td>
<td>-1153.71</td>
<td>-1108.3</td>
<td>-1032.93</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1265.4</td>
<td>-1374.76</td>
<td>-1259.12</td>
<td>-1227.14</td>
</tr>
<tr>
<td></td>
<td>6 w/dummies</td>
<td>-1266.13</td>
<td>-1374.76</td>
<td>-1260.27</td>
<td>-1227.14</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1192.58</td>
<td>-1142.43</td>
<td>-1108.89</td>
<td>-1036.11</td>
</tr>
<tr>
<td></td>
<td>7 w/dummies</td>
<td>-1175.85</td>
<td>-1142.43</td>
<td>-1101.3</td>
<td>-1036.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Holdout Sample</th>
<th>Experiment</th>
<th>CART</th>
<th>Logit</th>
<th>Hybrid</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>-1263.49</td>
<td>-1197.91</td>
<td>-1214.28</td>
<td>-1196.95</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1316.8</td>
<td>-1387.31</td>
<td>-1316.72</td>
<td>-1266.95</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1261.25</td>
<td>-1164.93</td>
<td>-1204.03</td>
<td>-1158.63</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1311.01</td>
<td>-1170.84</td>
<td>-1224.17</td>
<td>-1079.54</td>
</tr>
<tr>
<td></td>
<td>4 w/dummies</td>
<td>-1321.32</td>
<td>-1170.84</td>
<td>-1234.33</td>
<td>-1079.54</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1271.29</td>
<td>-1161.18</td>
<td>-1192.12</td>
<td>-1030.16</td>
</tr>
<tr>
<td></td>
<td>5 w/dummies</td>
<td>-1276.11</td>
<td>-1161.18</td>
<td>-1197.16</td>
<td>-1030.16</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1576.29</td>
<td>-1384.05</td>
<td>-1578.55</td>
<td>-1227.67</td>
</tr>
<tr>
<td></td>
<td>6 w/dummies</td>
<td>-1546.62</td>
<td>-1384.05</td>
<td>-1549.09</td>
<td>-1227.67</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1283.42</td>
<td>-1157.93</td>
<td>-1191.85</td>
<td>-1037.49</td>
</tr>
<tr>
<td></td>
<td>7 w/dummies</td>
<td>-1228.37</td>
<td>-1157.93</td>
<td>-1198.81</td>
<td>-1037.49</td>
</tr>
</tbody>
</table>
Log-likelihood results $N=10,000$

Learn/Test Sample

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CART</th>
<th>Logit</th>
<th>Hybrid</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-12384.8</td>
<td>-11980.0</td>
<td>-11972.2</td>
<td>-11981.0</td>
</tr>
<tr>
<td>2</td>
<td>-12671.4</td>
<td>-13661.8</td>
<td>-12670.9</td>
<td>-12658.7</td>
</tr>
<tr>
<td>3</td>
<td>-11931.5</td>
<td>-11589.3</td>
<td>-11563.5</td>
<td>-11543.4</td>
</tr>
<tr>
<td>4</td>
<td>-12025.6</td>
<td>-11633.4</td>
<td>-11497.4</td>
<td>-10789.1</td>
</tr>
<tr>
<td>4 w/dummies</td>
<td>-11979.6</td>
<td>-11633.4</td>
<td>-11484.5</td>
<td>-10789.1</td>
</tr>
<tr>
<td>5</td>
<td>-11822.1</td>
<td>-11548.4</td>
<td>-11274.8</td>
<td>-10277.8</td>
</tr>
<tr>
<td>5 w/dummies</td>
<td>-11728.0</td>
<td>-11548.4</td>
<td>-11230.8</td>
<td>-10277.8</td>
</tr>
<tr>
<td>6</td>
<td>-13127.9</td>
<td>-13788.5</td>
<td>-13085.9</td>
<td>-12267.8</td>
</tr>
<tr>
<td>6 w/dummies</td>
<td>-13069.2</td>
<td>-13788.7</td>
<td>-13046.3</td>
<td>-12268.0</td>
</tr>
<tr>
<td>7</td>
<td>-11625.4</td>
<td>-11507.5</td>
<td>-11217.0</td>
<td>-10374.7</td>
</tr>
<tr>
<td>7 w/dummies</td>
<td>-11792.5</td>
<td>-11505.6</td>
<td>-11400.0</td>
<td>-10370.6</td>
</tr>
</tbody>
</table>

Holdout Sample

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CART</th>
<th>Logit</th>
<th>Hybrid</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-12431.4</td>
<td>-11999.2</td>
<td>-12010.6</td>
<td>-11997.9</td>
</tr>
<tr>
<td>2</td>
<td>-12710.1</td>
<td>-13864.2</td>
<td>-12710.5</td>
<td>-12659.9</td>
</tr>
<tr>
<td>3</td>
<td>-12003.1</td>
<td>-11585.8</td>
<td>-11594.8</td>
<td>-11537.6</td>
</tr>
<tr>
<td>4</td>
<td>-12259.2</td>
<td>-11645.1</td>
<td>-11648.5</td>
<td>-10794.8</td>
</tr>
<tr>
<td>4 w/dummies</td>
<td>-12238.8</td>
<td>-11645.1</td>
<td>-11654.1</td>
<td>-10794.8</td>
</tr>
<tr>
<td>5</td>
<td>-12028.4</td>
<td>-11547.0</td>
<td>-11417.5</td>
<td>-10280.6</td>
</tr>
<tr>
<td>5 w/dummies</td>
<td>-11970.3</td>
<td>-11547.0</td>
<td>-11401.1</td>
<td>-10280.6</td>
</tr>
<tr>
<td>6</td>
<td>-13388.9</td>
<td>-13796.2</td>
<td>-13357.4</td>
<td>-12251.8</td>
</tr>
<tr>
<td>6 w/dummies</td>
<td>-13368.6</td>
<td>-13796.5</td>
<td>-13350.3</td>
<td>-12251.8</td>
</tr>
<tr>
<td>7</td>
<td>-12114.7</td>
<td>-11505.6</td>
<td>-11461.6</td>
<td>-10370.6</td>
</tr>
<tr>
<td>7 w/dummies</td>
<td>-11792.5</td>
<td>-11505.6</td>
<td>-11400.0</td>
<td>-10370.6</td>
</tr>
</tbody>
</table>
Performance on the holdout sample 2000 observations, 100 replications

Table 5
- **Actuals gains**

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CART</th>
<th>Logit</th>
<th>Hybrid</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1857</td>
<td>0.2406</td>
<td>0.237</td>
<td>0.2406</td>
</tr>
<tr>
<td>2</td>
<td>0.1606</td>
<td>0</td>
<td>0.1615</td>
<td>0.1809</td>
</tr>
<tr>
<td>3</td>
<td>0.2091</td>
<td>0.2584</td>
<td>0.251</td>
<td>0.2597</td>
</tr>
<tr>
<td>4</td>
<td>0.1879</td>
<td>0.256</td>
<td>0.2474</td>
<td>0.3013</td>
</tr>
<tr>
<td>4 w/dummies</td>
<td>0.1867</td>
<td>same</td>
<td>0.2465</td>
<td>same</td>
</tr>
<tr>
<td>5</td>
<td>0.1995</td>
<td>0.2498</td>
<td>0.2497</td>
<td>0.3092</td>
</tr>
<tr>
<td>5 w/dummies</td>
<td>0.1989</td>
<td>same</td>
<td>0.2496</td>
<td>same</td>
</tr>
<tr>
<td>6</td>
<td>0.0665</td>
<td>0.0198</td>
<td>0.0707</td>
<td>0.2061</td>
</tr>
<tr>
<td>6 w/dummies</td>
<td>0.0656</td>
<td>same</td>
<td>0.0696</td>
<td>same</td>
</tr>
<tr>
<td>7</td>
<td>0.1799</td>
<td>0.2441</td>
<td>0.2394</td>
<td>0.2966</td>
</tr>
<tr>
<td>7 w/dummies</td>
<td>0.1977</td>
<td>same</td>
<td>0.2399</td>
<td>same</td>
</tr>
</tbody>
</table>

Table 6
- **Expected gains**

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CART</th>
<th>Logit</th>
<th>Hybrid</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1853</td>
<td>0.2393</td>
<td>0.2358</td>
<td>0.2393</td>
</tr>
<tr>
<td>2</td>
<td>0.1609</td>
<td>0.0003</td>
<td>0.1621</td>
<td>0.1815</td>
</tr>
<tr>
<td>3</td>
<td>0.2116</td>
<td>0.2613</td>
<td>0.254</td>
<td>0.2627</td>
</tr>
<tr>
<td>4</td>
<td>0.189</td>
<td>0.2566</td>
<td>0.2483</td>
<td>0.3017</td>
</tr>
<tr>
<td>4 w/dummies</td>
<td>0.1873</td>
<td>same</td>
<td>0.247</td>
<td>same</td>
</tr>
<tr>
<td>5</td>
<td>0.1993</td>
<td>0.251</td>
<td>0.2505</td>
<td>0.3112</td>
</tr>
<tr>
<td>5 w/dummies</td>
<td>0.1989</td>
<td>same</td>
<td>0.2504</td>
<td>same</td>
</tr>
<tr>
<td>6</td>
<td>0.0664</td>
<td>0.0205</td>
<td>0.0706</td>
<td>0.2068</td>
</tr>
<tr>
<td>6 w/dummies</td>
<td>0.0658</td>
<td>same</td>
<td>0.0693</td>
<td>same</td>
</tr>
<tr>
<td>7</td>
<td>0.1814</td>
<td>0.2452</td>
<td>0.2408</td>
<td>0.2968</td>
</tr>
<tr>
<td>7 w/dummies</td>
<td>0.1957</td>
<td>same</td>
<td>0.2414</td>
<td>same</td>
</tr>
</tbody>
</table>
Performance on the holdout sample
20,000 observations, 100 replications

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CART</th>
<th>Logit</th>
<th>Hybrid</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.198</td>
<td>0.239</td>
<td>0.2386</td>
<td>0.239</td>
</tr>
<tr>
<td>2</td>
<td>0.1791</td>
<td>0.0003</td>
<td>0.1791</td>
<td>0.1819</td>
</tr>
<tr>
<td>3</td>
<td>0.2357</td>
<td>0.2619</td>
<td>0.2612</td>
<td>0.263</td>
</tr>
<tr>
<td>4</td>
<td>0.2241</td>
<td>0.2592</td>
<td>0.2601</td>
<td>0.302</td>
</tr>
<tr>
<td>4 w/dummies</td>
<td>0.226</td>
<td>same</td>
<td>0.26</td>
<td>same</td>
</tr>
<tr>
<td>5</td>
<td>0.2282</td>
<td>0.2536</td>
<td>0.2621</td>
<td>0.3114</td>
</tr>
<tr>
<td>5 w/dummies</td>
<td>0.232</td>
<td>same</td>
<td>0.2635</td>
<td>same</td>
</tr>
<tr>
<td>6</td>
<td>0.1114</td>
<td>0.0285</td>
<td>0.1209</td>
<td>0.2069</td>
</tr>
<tr>
<td>6 w/dummies</td>
<td>0.1167</td>
<td>same</td>
<td>0.1217</td>
<td>same</td>
</tr>
<tr>
<td>7</td>
<td>0.2152</td>
<td>0.247</td>
<td>0.251</td>
<td>0.2966</td>
</tr>
<tr>
<td>7 w/dummies</td>
<td>0.2323</td>
<td>same</td>
<td>0.2541</td>
<td>same</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CART</th>
<th>Logit</th>
<th>Hybrid</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1987</td>
<td>0.2395</td>
<td>0.2391</td>
<td>0.2395</td>
</tr>
<tr>
<td>2</td>
<td>0.1793</td>
<td>0.0004</td>
<td>0.1794</td>
<td>0.1818</td>
</tr>
<tr>
<td>3</td>
<td>0.2354</td>
<td>0.2614</td>
<td>0.2608</td>
<td>0.2626</td>
</tr>
<tr>
<td>4</td>
<td>0.2243</td>
<td>0.2589</td>
<td>0.2599</td>
<td>0.3019</td>
</tr>
<tr>
<td>4 w/dummies</td>
<td>0.2265</td>
<td>same</td>
<td>0.2601</td>
<td>same</td>
</tr>
<tr>
<td>5</td>
<td>0.2282</td>
<td>0.2533</td>
<td>0.2622</td>
<td>0.3113</td>
</tr>
<tr>
<td>5 w/dummies</td>
<td>0.2321</td>
<td>same</td>
<td>0.2635</td>
<td>same</td>
</tr>
<tr>
<td>6</td>
<td>0.1118</td>
<td>0.0296</td>
<td>0.1213</td>
<td>0.2068</td>
</tr>
<tr>
<td>6 w/dummies</td>
<td>0.1171</td>
<td>same</td>
<td>0.1223</td>
<td>same</td>
</tr>
<tr>
<td>7</td>
<td>0.2159</td>
<td>0.2471</td>
<td>0.2514</td>
<td>0.2968</td>
</tr>
<tr>
<td>7 w/dummies</td>
<td>0.2316</td>
<td>same</td>
<td>0.2544</td>
<td>same</td>
</tr>
</tbody>
</table>

- Table 12
 - Actual gains
- Table 13
 - Expected gains
The relative gains pattern roughly matches the LL pattern (see tables 5 and 12)

- The Hybrid seems to do slightly better in terms of gains than it does in terms of LL
- Even when the Hybrid is not the best model, the Hybrid is never much worse than the best model
- In some cases the Hybrid is much better than the other models
- The larger the sample the better the hybrid performs relative to the other alternatives. (Compare table 5 with 2000 observations to table 12 with 20000 observations)
Measurement of performance without a holdout sample

- In the Monte Carlo situation the true probabilities are known; thus, the expected performance can be computed
 - The expected performance on the LEARN/TEST sample or HOLDOUT sample and the actual performance on the HOLDOUT sample are all identical to within the random sampling error
 - Using the estimated probabilities to estimate the expected performance overestimates the true performance substantially for in-sample data and in some cases for out-of-sample data as well
Performance measurement

- The actual integral gains computed on the TEST sample alone is a very good estimate of the out-of-sample performance.
- The column marked "Truth" gives the best possible average out-of-sample performance. "Truth" gives the gains integral based on true probabilities. In some cases the models achieve almost the maximum possible gains. In others they achieve much less.
- In-sample estimated models may do better than the “Truth” due to over fitting.
- Overfitting means the performance will be worse out-of-sample:
 - A very overfit model will perform much worse out-of-sample
 - In larger samples overfitting is reduced (compare Tables 1 and 8)
- NOTE: “Truth” has not been adjusted for missingness. No model could ever achieve the gains listed under the truth column for the cases with missing data (Experiments 4 through 7)
Performance in the presence of Missing Values

• Including dummies for missing values in the CART improves CART's performance in large samples (see Table 12) and whenever the missingness is informative (see Experiment 7, Table 5)
 – In most real world situations individuals with missing data do differ from other individuals. Missingness is informative. This should not be surprising, considering the usual reasons for missing data
 ♦ Refusal to answer questions
 ♦ Failure to match data from other sources
 ♦ Nonexistent data (credit bureau, driver's license records, census, etc.)
 ♦ Inconsistent or impossible combinations
包括缺失值的哑变量在CART中可以改善Hybrid的性能，在大样本中（参见表12）和当缺失性是信息性的时（参见实验7，表5）。
- 改善更小。Hybrid即使基于一个表现平平的CART模型也能很好工作。检查实验7的结果，参见表5, 6, 12和13。
- 在大样本中含缺失性时，Hybrid总是优于Logit和CART。Logit却在一个合理的线性logistic模型的条件下，在缺失性情况下表现得很好。
References